3.6 La loi zêta, ou comment utiliser les probabilités pour prouver des résultats annexes (notamment sur la fonction ζ) (121, 244, 264, 266) [27] [17] [31]

Dans ce développement, on montre que la fonction ζ admet un développement en produit Eulérien avec des outils de probabilités! On fait alors le lien entre nombres premiers, fonction spéciale et probabilités avec ce théorème!

Théorème 3.23 (Développement eulérien de la fonction ζ). Notons $\mathscr P$ l'ensemble des nombres premiers. Pour tout $s \in (1, +\infty)$, on a :

$$\zeta(s) = \prod_{p \in \mathscr{P}} \left(1 - \frac{1}{p^s} \right)^{-1}.$$

Démonstration. Étape 1 : Introduction de la loi zêta

Pour s>1, on définit la loi zêta de paramètre s comme l'unique mesure de probabilité \mathbb{P}_s sur $(\mathbb{N}^*, \mathscr{P}(\mathbb{N}^*))$ telle que :

$$\forall n \in \mathbb{N}^*, \quad \mathbb{P}_s(\{n\}) = \frac{1}{\zeta(s)n^s}.$$

Cela définit bien une mesure de probabilité sur $(\mathbb{N}^*, \mathscr{P}(\mathbb{N})^*)$ étant donné que, étant donné que s > 1, la série $\sum \mathbb{P}_s(\{n\})$ converge et est de somme $\zeta(s)$.

Étape 2 : les événements $(p\mathbb{N}^*)_{p\in\mathscr{P}}$ sont mutuellement indépendants

Pour $k \in \mathbb{N}^*$, on a :

$$\mathbb{P}_{s}(k\mathbb{N}^{*}) = \sum_{j=1}^{+\infty} \mathbb{P}_{s}(\{kj\}) = \sum_{j=1}^{+\infty} \frac{1}{\zeta(s)k^{s}j^{s}} = \frac{1}{k^{s}}.$$

Prenons maintenant p_1, \ldots, p_n n nombres premiers distincts. On a :

$$\bigcap_{i=1}^{n} (p_{i} \mathbb{N}^{*}) = \left\{ m \in \mathbb{N}^{*} \mid \forall i \in [1, n], \ p_{i} \mid m \right\} = \left\{ m \in \mathbb{N}^{*} \mid \prod_{i=1}^{n} p_{i} \mid m \right\} = \left(\prod_{i=1}^{n} p_{i}\right) \mathbb{N}^{*}$$

étant donné que les p_i sont des nombres premiers tous distincts (on a donc, en particulier qu'ils sont premiers entre eux, d'où la deuxième égalité ensembliste). On a donc :

$$\mathbb{P}_s\left(\bigcap_{i=1}^n(p_i\mathbb{N}^*)\right) = \mathbb{P}_s\left(\left(\prod_{i=1}^n p_i\right)\mathbb{N}^*\right) = \frac{1}{\left(\prod_{i=1}^n p_i\right)^s} = \prod_{i=1}^n \frac{1}{p_i^s} = \prod_{i=1}^n \mathbb{P}_s(p_i\mathbb{N}^*).$$

Étape 3 : Convergence du produit

Rangeons les nombres premiers dans l'ordre croissant et notons-les $(p_n)_{n\in\mathbb{N}^*}$. Le produit du théorème converge donc si et seulement si la série :

$$\sum_{n \in \mathbb{N}^*} -\ln\left(1 - \frac{1}{p_n^s}\right)$$

converge. Or, étant donné que pour tout $n \in \mathbb{N}^*, p_n > n$, on a :

$$-\ln\left(1-\frac{1}{p_n^s}\right) \underset{n\to+\infty}{\sim} \frac{1}{p_n^s} < \frac{1}{n^s},$$

de sorte que, étant donné que $s>1,\,\sum \frac{1}{n^s}$ converge. Ainsi, du fait de la comparaison :

$$-\ln\left(1 - \frac{1}{p_n^s}\right) = \mathop{O}_{n \to +\infty}\left(\frac{1}{n^s}\right)$$

on a, étant donné que les suites en jeu sont positives, que $\sum_{n\in\mathbb{N}^*}-\ln\left(1-\frac{1}{p_n^s}\right)$ converge. Ainsi, le produit

$$\prod_{n=1}^{+\infty} \left(1 - \frac{1}{p_n^s}\right)^{-1}$$

converge.

Étape 4: Conclusion

Posons, pour $n \in \mathbb{N}^*$, l'événement A_n suivant :

$$A_n = \bigcap_{k=1}^n \left(\mathbb{N}^* \setminus (p_k \mathbb{N}^*) \right).$$

La suite $(A_n)_{n\in\mathbb{N}^*}$ forme une suite décroissante d'événements. Ainsi, on a :

$$\mathbb{P}_{s}\left(\bigcap_{n=1}^{+\infty}A_{n}\right)=\lim_{n\to+\infty}\mathbb{P}_{s}\left(\bigcap_{k=1}^{n}A_{k}\right)=\lim_{n\to+\infty}\prod_{k=1}^{n}\left(1-\mathbb{P}_{s}\left(p_{k}\mathbb{N}^{*}\right)\right)=\lim_{n\to+\infty}\prod_{k=1}^{n}\left(1-\mathbb{P}_{s}\left(p_{k}\mathbb{N}^{*}\right)\right)=\prod_{n=1}^{+\infty}\left(1-\frac{1}{p_{n}^{s}}\right).$$

Or, on a:

$$\bigcap_{n=1}^{+\infty} A_n = \bigcap_{n=1}^{+\infty} (\mathbb{N}^* \setminus (p_n \mathbb{N}^*)) = \{1\}$$

étant donné que 1 est l'unique entier strictement positif divisible par aucun nombre premier. Ainsi, on conclut :

$$\prod_{n=1}^{+\infty} \left(1 - \frac{1}{p_n^s} \right) = \mathbb{P}_s(\{1\}) = \frac{1}{\zeta(s)},$$

ce qui est la formule attendue!

Un corollaire à ce résultat est le suivant :

Corollaire 3.24 (Divergence de la série des inverses des nombres premiers). On a :

$$\sum_{n=1}^{+\infty} \frac{1}{p_n} = +\infty.$$

$D\'{e}monstration$. Étape 1 : Équivalent de ζ en 1

On effectue une classique comparaison série-intégrale :

$$\forall n \geqslant 2, \ \forall s > 1, \quad \int_{n}^{n+1} \frac{\mathrm{d}x}{x^s} \leqslant \frac{1}{n^s} \leqslant \int_{n-1}^{n} \frac{\mathrm{d}x}{x^s}$$

Ainsi, on a, en sommant ces termes:

$$\forall s > 1, \quad \int_{2}^{+\infty} \frac{\mathrm{d}x}{x^{s}} \leqslant \zeta(s) - 1 \leqslant \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{s}}$$

i.e.

$$\frac{1}{(s-1)2^{s-1}} \leqslant \zeta(s) - 1 \leqslant \frac{1}{s-1}.$$

Ainsi, on obtient:

$$\zeta(s) \underset{s \to 1^+}{\sim} \frac{1}{s-1}.$$

Étape 2 : conclusion

Étant donné que :

$$-\ln\left(1-\frac{1}{p_n}\right) \underset{n\to+\infty}{\sim} \frac{1}{p_n}$$

et que les suites en jeu sont positives, on a que $\sum \frac{1}{p_n}$ converge si et seulement si $\sum -\ln\left(1-\frac{1}{p_n}\right)$ converge. Ainsi, la série $\sum \frac{1}{p_n}$ si et seulement si le produit :

$$\prod_{n=1}^{+\infty} \left(1 - \frac{1}{p_n}\right)^{-1}$$

converge. Notons ℓ la valeur de ce produit. Étant donné que, pour tout s > 1, on a l'inégalité :

$$\forall n \in \mathbb{N}^*, \quad 0 < \frac{1}{p_n^s} \leqslant \frac{1}{p_n},$$

on a:

$$\forall s > 1, \quad \zeta(s) = \prod_{n=1}^{+\infty} \left(1 - \frac{1}{p_n^s}\right)^{-1} \leqslant \prod_{n=1}^{+\infty} \left(1 - \frac{1}{p_n}\right)^{-1} = \ell,$$

or, on rappelle:

$$\zeta(s) \xrightarrow[s \to 1^+]{} +\infty!$$
 ABSURDE!

Ainsi, la série $\sum \frac{1}{p_n}$ diverge.

Remarque 3.6.1 (Vers le théorème de la progression arithmétique). On a des développements eulériens similaires pour ce qui s'appelle les fonctions L de Dirichlet :

Définition 3.25. Soit $m \in \mathbb{N}^*$

- 1. On appelle caractère de Dirichlet modulo m tout élément $\chi \in \widehat{U}_m$, où U_m désigne le groupe multiplicatif $\left(\frac{\mathbb{Z}}{m\mathbb{Z}}\right)^{\times}$ et, si G est un groupe, \widehat{G} désigne les morphismes de G dans \mathbb{C}^* .
- 2. Si χ est un caractère de Dirichlet modulo m, alors, on appelle série L de Dirichlet associé à χ la fonction définie par :

$$\forall s \in (1, +\infty), \quad L(\chi, s) = \sum_{n=1}^{+\infty} \frac{\chi(n)}{n^s}$$

où χ a été prolongée sur \mathbb{N}^* ainsi :

$$\chi(n) = \begin{cases} \chi(\overline{n}) & \text{si } n \land m = 1, \\ 0 & \text{sinon.} \end{cases}$$

On a alors le résultat suivant :

Théorème 3.26. Soient $m \in \mathbb{N}^*$ et χ un caractère de Dirichlet modulo m. On a alors que la série L associée à χ vérifie :

$$\forall s \in (1, +\infty), \quad L(\chi, s) = \prod_{p \in \mathscr{P}} \left(1 - \frac{\chi(p)}{p^s}\right)^{-1}.$$

Idée de preuve. On peut en fait également prouver le développement eulérien de ζ avec l'argument que je vais développer. Premièrement, étant donné que χ est un caractère de Dirichlet modulo m, on a :

$$\forall n \in \mathbb{N}^*, \quad \chi(n) \in \mu_{\varphi(m)}(\mathbb{C}),$$

et donc ce sont des nombres de module 1, ce qui justifie la convergence du produit (et également la convergence de la série L). De plus, on a :

$$\forall n \in \mathbb{N}^*, \quad \prod_{k=1}^n \left(1 - \frac{\chi(p_k)}{p_k^s} \right)^{-1} = \prod_{i=1}^n \left(\sum_{j=0}^{+\infty} \frac{\chi(p_k)^j}{p_k^{js}} \right) = \prod_{k=1}^n \left(\sum_{j=0}^{+\infty} \frac{\chi\left(p_k^j\right)}{p_k^{js}} \right) = \sum_{(j_1, \dots, j_n) \in \mathbb{N}^n} \frac{\chi\left(\prod_{k=1}^n p_k^{j_k}\right)^{-1}}{\left(\prod_{k=1}^n p_k^{j_k}\right)^{-1}} = \prod_{k=1}^n \left(\sum_{j=0}^{+\infty} \frac{\chi\left(p_k^j\right)^j}{p_k^{js}} \right) = \sum_{(j_1, \dots, j_n) \in \mathbb{N}^n} \frac{\chi\left(\prod_{k=1}^n p_k^{j_k}\right)^{-1}}{\left(\prod_{k=1}^n p_k^{j_k}\right)^{-1}} = \prod_{k=1}^n \left(\sum_{j=0}^{+\infty} \frac{\chi\left(p_k^j\right)^j}{p_k^{js}} \right) = \prod_{k=1}^n \left(\sum_{j=0}^{+\infty} \frac{\chi\left(p_k^j\right)^$$

et on a qu'en faisant tendre n vers $+\infty$, on va récupérer tous les entiers dans la somme, sans en compter deux fois par unicité de la décomposition en produits de facteurs premiers, et donc :

$$\prod_{n=1}^{+\infty} \left(1 - \frac{\chi(p_n)}{p_n^s} \right)^{-1} = \sum_{n=1}^{+\infty} \frac{\chi(n)}{n^s} = L(\chi, s).$$

À partir de là, on peut définir, pour $\overline{a} \in U_m$ et s > 1 la fonction suivante :

$$\omega(s, \overline{a}) = \sum_{p \in \mathscr{P}} \left(\sum_{\substack{k \in \mathbb{N}^* \\ p^k \in \overline{a}}} \frac{1}{kp^{ks}} \right).$$

En découpant cette somme selon si k=1 ou non, on voit que s'il n'existe qu'un nombre fini de nombres premiers p congrus à a modulo m (i.e. $p \in \overline{a}$), alors $\omega(s,\overline{a})$ a une limite quand $s \to 1^+$. Ainsi, il suffit de montrer que $\omega(\cdot,\overline{a})$ diverge en 1 pour obtenir le résultat. Un théorème d'analyse de Fourier sur les groupes finis montre qu'on a la formule suivante :

$$\forall s > 1, \ \forall \overline{a} \in U_m, \quad \omega(s, \overline{a}) = \frac{1}{\varphi(m)} \sum_{\chi \in \widehat{U_m}} \overline{\chi(\overline{a})} \log (L(\chi, s)).$$

On montre ensuite (c'est très dur!! ce résultat utilise une formule générale sur les résidus des séries L en 1) que si χ n'est pas le morphisme trivial, $L(\chi,\cdot)$ est continue en 1. Si χ est le caractère trivial, en revanche, du fait du développement en prouit eulérien, on a :

$$\forall s > 1, \quad L(\chi, s) = \zeta(s) \prod_{\substack{p \in \mathscr{P} \\ p \mid m}} \left(1 - \frac{1}{p^s}\right),$$

qui diverge en s=1. On en conclut donc le théorème de la progression arithmétique!